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Abstract 
Physics based sensor fusion attempts to utilize the phe- 
nomenology of sensors to combine external conditions 
with data collected by the sensors into a global consis- 
tent dynamic representation. Although there have been a 
few approaches using this paradigm, it is still not en- 
tirely clear what kinds of physical models are appropri- 
ate for  different sensing devices and conditions. We 
provide physical models that are suitable for the visible 
and infrared region of the spectrum. The physical mod- 
els are described in detail. Moreover, the advantages 
and disadvantages of each model, their applicability, 
and guidelines for  selecting the appropriate parameters 
are provided. Experimental results are also provided to 
indicate the applicability of the physical models. 

Index terms: Dichromatic Reflection Model, Energy Equi- 
librium Model, Physics-based Fusion, Ward Reflection 
Model. 

1. INTRODUCTION 
Multisensor fusion attempts to combine the information 
from all available sensors into a unified representation. 
In other words, it refers to any stage in the integration 
process where there is an actual combination (or fusion) 
of different sources of sensory information into one 
representation. Some of the advantages to multisensor 
fusion are improved detection, increased accuracy, re- 
duced ambiguity, robust operation, and extended cover- 
age [ I]. To illustrate how these advantages come about, 
relationship among sensors are categorized into three 
types of relations, complementary, competitive, and 
cooperative. Moreover, fision can take place at pixel, 
feature or decision level. There has been an explosion of 
applications in multisensor fusion and integration; how- 
ever, approaches utilized so far roughly fall into the 
following categories: statistical-based [2,3] (e.g., Bayes- 
ian, Dempster-Shafer, fuzzy, MAP, ML), AI-based [4,5] 
(e.g., Knowledge-based, rule-based, information theo- 
retic), Algorithmic [6,7] (e.g., Graphs, Trees, Tables, 
and vote based techniques such as Hough transform), 
and Physics-based [8-101 (e.g., thermal, reflectance 
models). Statistical-based approaches have been used 
extensively at all levels of fusion due to their well- 
developed mathematics. They provide a unified frame- 
work and methods that can deal with sensor noise. These 
methods, however, require enormous amount of data and 
prior knowledge of statistical properties of the signals. 

AI-based techniques have the advantage of incorporating 
external knowledge and heuristics that can be utilized to 
handle difficult applications. These methods, however, 
are more limited, domain specific and rely on heuristics 
provided by external experts. Algorithmic methods pro- 
vide data structures that can be used to put the incoming 
data and information into a unified structure, where, 
sensory data can be treated in a unified manner. Well- 
developed algorithms such as graph search algorithms 
can then be applied. These methods are, therefore, suit- 
able for cases where the data can be represented in the 
required format; moreover, once designed, they cannot 
be easily adapted if new types of sensors are introduced 
in the system. 
Approaches that utilize the phenomenology of the sensor 
to model signal, based on the physical aspect of the 
world, fall under the category of physics-based fusion. 
Only recently, physics-based methods have found their 
way into the fusion domain. Unlike data driven ap- 
proaches such as statistical and algorithmic methods, 
physics-based fusion does not require enormous amount 
of observations to be applicable. In a highly dynamic 
scenario where only a limited training set is available, 
physics-based methods can generate data based on 
physical models without having access to the actual data. 
External conditions along with sensory data can act on 
models which can react to these data to integrate all the 
sensory input into a dynamically global consistent repre- 
sentation. Some key features and advantages of physics- 
based fusion are: 1) Physical models can describe a 
scene based on sound models, which are mathematically 
proven; 2) It is natural and constructive to associate 
sensed signals to various physical parameters, which can 
serve as meaningful features; 3) the physical model 
provides known constraints that can be used to solve for 
the physical parameters; 4) The physical model can 
serve as an independent external information source, for 
example, conservation of energy is an absolute law; 5) It 
has enormous generalizing power and its prediction 
accuracy can increase with time; and 6) Physics-based 
fusion paradigm can be used in changing or evolving 
scenarios where the evolution of the scene can be mod- 
eled by physics. 

2. PHYSICS-BASED FUSION AND RELATED 

APPROACHES 

A physical model describes relation of object parameters 
(e.g., reflectance of surface, material density, surface 
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orientation, roughness, temperature, etc.) to scene pa- 
rameters such as ambient temperature, direction of illu- 
mination, wind velocity, etc. The success of the physics- 
based approaches relies on how well the model can 
predict the phenomenon being investigated. This re- 
quires the sensing device to provide adequate accuracy 
and the model being general enough that can describe 
the scene within acceptable error. For these reasons, it 
has only been in the recent past that physics-based mod- 
els have been incorporated into fusion models. 

2.1 Related Approaches 
An early work by Terzopoulos [9] introduced the con- 
cept of physically based deformable models whose 
physical behaviors are governed by the continuum me- 
chanical equations of deformable bodies. The model has 
been applied to image contour extraction, stereo and 
motion matching and visual surface reconstruction. 
Pavlidis et al. [ 101 have developed an automatic passen- 
ger counting system based on sub-bands below SWIR. 
They perform fusion, by first splitting the NIR band into 
1.1 - 1.4 pm and 1.4 - 1.7 pm then subtracting them 
from each other. This is chosen due to the fact that emit- 
tance detected by human skin abruptly changes (sharply 
drops) at 1.4 pm. In [SI a physical model based on the 
energy equilibrium is developed to model the thermal 
signal to segment an image. The fusion is viewed as the 
problem of relating scene parameters to object parame- 
ters. Since IR bands above 3pm measure thermal fluc- 
tuations, surfaces are modeled based on heat conduc- 
tance; moreover, conservation of energy is applied to 
model the interaction of surface and radiation. 
The contribution of the paper is to introduce several 
physic-based models that are suitable for a variety of 
multisensor fusion problems. We provide guidelines on 
selecting the suitable models and parameters. In addi- 
tion, we show how external and environmental sensory 
input are fused in a reasonable and unified manner. 

3. PHYSICS-BASED MODELS 

In the following we introduce physical models that de- 
scribe the phenomenology of the visible and infrared 
part of the spectrum. 

3. I Reflectance Models (Visible) 
There has been a number of physical models describing 
surface reflections. A complete treatment of all these 
models is beyond the scope of this paper; thus, we de- 
scribe a few models that have been successfully applied 
both in computer vision and computer graphics to best 
model natural scenes. In order to proceed with the mod- 
els, we first introduce the concept of lobes. In order to 
study surface reflections, first a framework for studying 
bidirectional reflectance distribution functions (BRDF) 
based on the concept of distribution of scattering light in 

the form of lobes is introduced. Figure 1 describes the 
concept. 

Surface 
Normal Specular 

Incident i l l ~ ~ ~ ~ a t i o ~ ~ d i r e c t i o n  ~~~~l 

Backscatter lobe --, lobe 
Forescatter - '\\ 

Q,- / 

Figure 1. The lobe model describing BRDF. 

The first model was introduced by Lambert and is 
known as Lambertian model which models the normal 
lobe. Simply stated, lambertian model states that light 
scatters and reflects equally in all direction in the hemi- 
sphere above the incident light. The model is given as 
follows: 

where K is coefficient of reflection depending on surface 
material, I is the intensity observed, 8i is the angle be- 
tween incident illumination and the surface normal, and 
Ii, is the intensity of the incident light and the BRDF is 
assumed to be: f ( y  , Q) = 1/7c where y , o, are solid 
angles subtending incident and reflected light. Although 
this model can approximate experimental data for a large 
set of materials, it is a poor approximation for rough 
surfaces. 
An early attempt to model the forescatter lobe was made 
by Phong [12]. The model extends the Lambertian 
model and assumes maximum reflection along the per- 
fect specular direction ei=8,. the model is given as: 

Where n describes the extend of spread of the forescatter 
lobe, and a is the angle between the viewing direction 
and the specular ray. Phong's model fails to account for 
Fresnel effects and assumes smooth surfaces, thus sur- 
faces generated by this model are plastic and unnatural. 

I = K I~, cos (ei) (1) 

I = K I ~ ,  COS (ei) + CoSya) (2) 

In the dichromatic reflection model [ 131, the backscatter 
and forescatter lobes are ignored and the specular com- 
ponent is assumed not to have been colored; therefore, 
the forescatter BRDF approximation is independent of 
the wavelength. In the dichromatic model, the reflection 
is based on two phenomenon, the interaction at the sur- 
face and the subsurface. Furthermore, reflection due to 
surface is assumed to be specular in nature and the sur- 
face of materials is assumed to have very few pigment 
particles; hence, the surface reflection component is 
unattenuated. The scattering and selective absorption 
due to pigments in the subsurface are what gives rise to 
the color of the surface. The dichromatic reflection 
model is described as: 

(3) L(kei, er) = Li(k81, er) + Lb(k% e r )  

= mi(ei, 01) ci@) + mb(ei, er) Cb(h) 
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where L is the total reflected intensity, Li and Lb are 
reflected intensities due to surface and subsurface re- 
spectively, mi and mb are geometric terms and c; and cb 
are relative spectral power distribution (SPD) of the 
surface and subsurface respectively. The dichromatic 
model is useful in describing the reflection from inho- 
mogeneous opaque dielectric materials (e.g., plastics). It 
is also useful in describing material colors since the SPD 
of the reflected light due to subsurface is decoupled from 
the geometric terms. Although the dichromatic model 
has been used in variety of computer vision tasks, it fails 
to model conductive materials which do not exhibit 
subsurface reflection and attenuate the wavelength of the 
interface reflection. 
A more general model is given by Ward [14]. Depend- 
ing on the level of sophistication required and the type 
of material desired to model, the Ward model can be 
extended to include diffuse, specular and colored reflec- 
tions. The general Ward model is given as follows: 

1 exp(-tan2 6/0:) 
cos(%,) cos (8 , )  4m: 

where C is the material color vector which denotes the 
surface reflectance at three discrete wavelengths 
(R,G,B), Pd and ps are diffuse and specular reflectance 
into the normal and forescatter lobe respectively with the 
constraint that Pd + ps = 1, (T, is the rms slope and 6 is 
the half angle as shown in Figure 2. 

Mean surface 

Figure 2. Facet andsurface distribution model. 

3.2 Thermal Models (Infrared) 
Just as described in the previous section, there have also 
been a number of physical models proposed to model the 
thermal interactions in a scene. We describe physics that 
has been developed in different literatures for estimating 
heat fluxes. In the most general sense, heat fluxes can be 
viewed as the exchange of energy between molecules. A 
system of energy equilibrium describes these interac- 
tions based on three phenomenon: Energy Radiated 
(Erad), Energy Conducted (Ecd), and Energy Convected 
(ECJ 

Ein Eout Eout Erad + Ecv + Ecd 

Subsurface Ecd 

Figure 3. Conservation of energy and fluxes. 

Figure 3 describes the conservation of energy, which 
states that the energy input to a system must equal to the 
energy output by a system. 
In order to explain the above energies the following 
provides the basics of each phenomenon. 
Radiation - Radiation is referred to as the energy emit- 
ted by matter that is of a finite temperature. Energy of a 
single quantum is given as: E = h v 
h = Planck's constant = 6.625 x 
v = frequency = clh; c = speed of light, h=wavelength 
Energy density of radiation per unit volume per unit 
wavelength is given by Planck's equation: 

8 n h C i l 4  

eMT - 1  
qn = hc ( 5 )  

- 

k = Stephan-Boltzman constant = 1.38066 x 
J/molecule Kelvin, T = Temperature in Kelvin. 
Integrating the above over all wavelengths, we'll have 

(6) 
where (T = 5.669 x 10.' watts/m2 Kelvin4 and the sub- 
script b is for blackbody which is an idealized concept 
that refers to a body capable of 100% absorption (or 
emission) of energy. This law states that the energy 
radiated by a blackbody over all wavelengths is propor- 
tional to its internal temperature to the fourth power. The 
ramification of this law is that for a given blackbody 
temperature, its energy can be derived directly and vice- 
versa. Depending on the surface material, portion of 
radiation reaching a surface is absorbed, reflected and 
transmitted. Due to conservation of energy, these per- 
centages must add up to loo%, that is: 
reflectivity (p) + absorptivity (a) + transmissivity (T)= 1 (7) 
Since most solids are opaque, their transmissivity is zero 
and p + a = l , o r  a = l - p .  
All bodies above absolute zero temperature emit energy 
in the form of radiation. Their ability to emit is referred 
to as emissivity or E. For blackbodies, this emissivity is 
equivalent to absorptivity (a). For non-blackbodies, this 
value must be estimated. Emissivity of most materials 
generally varies with wavelength, temperature and sur- 
face conditions. 

the famous Stephan-Boltzman law: Eb = CJ ? 

3.2.1 Models for  Ei, 
In order to estimate the energy equilibrium, we must 
have an estimate of radiant energy that reaches the sur- 
face, Ei,. The radiation reaching the earth's surface is a 
combination of complex interaction of sun's radiation 
with the environment. Some of these interactions in- 
volve the sky, the length of the path traversed (e,g. latti- 
tude, longtitude), cloud cover, air quality, air pressure, 
air density, amount of water vapor and other particu- 
lates, and so on. The radiation reaching the earth's upper 
atmosphere is regarded as a constant and is given as 
approximately: 
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Eso~ar-const = 1089 W/m2 (8) 
Depending on the level of details and sophistication 
desired, any number of models can be applied to esti- 
mate Ei,. In what follows we provide two models, the 
first one is based on individual atmospheric conditions, 
and the second one is based on lump atmospheric condi- 
tion [ 161. The models are provided as a set of equations. 

Model 1 
Ei, = Et ZC Ta ( ~ m  - a,) 

E1 = Esoia-const COS(Z); 
Z = cos-’[sin (lat) sin(decl)]* [cos(lat) cos(dec1) cos(Ha)]; 
decl =0.006918 - (0.399912 * cos(FY)) + (0.070257 * sin(FY)) - 
(0.006758 * cos(2*FY)) + (0.000907 * sin(2*FY)) - (0.002697 * 
cos(3*FY)) + (0.00148 * sin(3 * FY)); 
FY = (2* pi / 365) * (DayNum + ((Hour-12)/24)); 
Ha = 15 * (12 - ((LST + ((4160) * (LSTM-long)) + (EoT/60)))); 
LST = Hour + Minute/60; 
EoT = 229.18 * (0.000075 + (0.001868 * cos(FY)) - (0.032077 * 
sin(FY)) - (0.014615 * cos(2*FY)) - (0.040849 * sin(2*FY))); 

‘cam = 1.021 -0,0824 [(949 ’ BuP)IlO5 + (0.51/Op)]’; 

0, = 35 I [1224 cos2(Z) + 11 ’ ; 
a, = 0.077 [(Pw I OP)]’ 

zc = 1 - c, ( 1 - C,) 

0, =(Om * Bkp)  I 1013; 

P, = [0.493 (HI100) e(26.23-54161Ta)1 I Ta;  

Definitions for Model 1 
El = irradiation at the Earth’s surface, zc = Cloud trasmissivity, 
z. = Aerosol transmissivity (from look up table), 7=tm = atrnos- 
pheric transmissivity, a, = water vapor absorptivity. 
2 = Zenith angle, decl = Sun’s declination angle, lat = Latitude, 
long = Longitude, FY = Fractional Year, Ha = Hour Angle, 
DayNum = Day Number (1..365) (e.g., Feb. 2 = 33), LST = 
Local Standard Time, LSTM = Local Standard Time Meridian 
(120’ for Pacific Time) , EoT = Equation of Time 

C, = Fraction of sky observed by cloud , Ct = Cloud type at- 
tenuation factor, Bt, = Atmospheric Pressure, 0, = Optical 
length, 0, = Optical Mass, P, = Perceptible water, H = Relative 
humidity, T. = Ambient Air Temp. 

I Model 2 I 

Definitions for Model 2 
Edirect = direct irradiation due to sun 
Eskylight = irradiation due to sky = (40-70 W/m2) 
E,,, = irradiation due to upper atmosphere 
ma = The number of air masses (ma = secant(Z)) 
T, = Air temperature 
E(BB,T,) = radiation of a blackbody at Ta temp. 

3.2.2 Models for E, 
The convective heat flux is due to transfer of heat by the 
motion of fluids. The heat flux at the surface is given by: 

where h is the coefficient of convection that depends on 
many factors. Although there exist two types of convec- 
tions free convection (due to buoyancy of materials) and 

E,, = h (Ts - Tm) (9) 

forced convection (due to fluid flow), we only consider 
the forced convection since the effect of free convection 
can be negligible in many circumstances. The forced 
convection can be laminar or turbulent depending 
mainly on the fluid velocity. The coefficient of convec- 
tion depends on what type of fluid flow is considered. 
The most important parameter in estimating the convec- 
tive heat flux is h. Derivation of h is complex for gen- 
eral scene; however, it can be estimated for flat plates as 
follows. First the Reynold number is decided. Depend- 
ing on the value of the Reynold number, correct equa- 
tion for the Nusselt number for a particular surface ge- 
ometry and flow condition is used. Finally, the Prendlt 
number is calculated to derive the Nusselt number hence 
the coefficient of convection, h. The process is given as 
follows: 

p- = Free stream velocity; x = distance from the edge ; 
v = kinematic viscosity. 
If Re 2 5 * IO5 then flow condition is considered to be 
turbulent. In addition to the flow condition, the equation 
for the Nusselt number depends on the surface geometry. 
For a flat plate the Nusselt number is given as follows 
[15]: 
Laminar (11) Turbulent (12) Miwed (13) 

where the Pr is the Prendlt number: 

R e = ( & x ) /  v (10) 

0.664 Re” Pr’” 0.0592 Re4l5 Prl” (0.037 Re”’ - 871) Pr’” 

Pr = C ,  p /  kf; (14) 
h = ( k f N u ) / L ;  (15) 

C, = fluid specific heat, and p = dynamic viscosity, kf = 
fluid conductivity, L= characteristic length, Nu = Nus- 
selt. A back of the envelop, simpler estimation of h is 
given in [ 151: 

h =  1.7 IT-TaP”+(6Va0.*) /Lo2 (16) 
Va = wind speed; L = characteristic Lateral dimension 
of surface. 

3.2.3 Models for Ecd 
To complete our thermal model, we now consider the 
heat flux due to conduction. Conduction is the energy 
transferred through molecular interaction when a gradi- 
ent temperature exists. As shown in Figure 4, the energy 
due to heat flow per unit time is: 

The quantity to the left is the energy transfer due to 
conduction Ecd. It is also customary to divide both the 
numerator and denominator of the right side of this 
equation by k so: 

where L/k is called the thermal resistance or R-value and 
is tabulated for many materials. 
Thermal conductivity is also expressed in terms of ther- 
mal diffusivity. Thermal diffusivity measures the ability 
of material to conduct thermal energy relative to its 
ability to store thermal energy and is given as: 

(Q/t) = [k A (T2 - Tl)] / L (17) 

E,d=A (T2 -T1) / (L / k) (18) 

d, = k / [D,, C,]; (19) 
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D,= density, C, = Specific Heat = (Q / m(T2-TI)) , m = 

mass. Materials with small d, respond quickly to envi- 
ronment; whereas, materials with large d, take longer to 
reach equilibrium. Another approximation for conduc- 
tive heat flux is also given as: 

where D = Density, = effective thermal depth of heat 
storage, dT0 = change in interior temperature, dt = short 
time interval allowed for temperature change. 
An estimation for 

k (T-TO) = 2 C, hd D (dTo / dt) (20) 

is given as: 
hd =[2k / (27~ C, D)]" (21) 

A 
B 

T1 < T 2  
T2 -& Heat flow 

I L I  
Figure 4. Heat flow in a flat plate. k = conductive 
coefficient, A = Area, L = Length, TI,T2 = temp. 

R G B 
0.61 10125 0.620583 0.491460 
0.6712749 0.596953 0.43671 3 

The method in (20) requires knowledge of the initial 
value for the interior temperature. Since this is not pos- 
sible, an initial value can be estimated based on the 
diurnal temperature for the current season and through 
an iterative process, as more values are measured, a 
more accurate estimate of this value can be achieved. 

VT. We have shown that the principal component vector 
(vector corresponding to the largest eigenvalue) aligns 
naturally with Cb [ 111. Furthermore, eigenvalues (01, 
02, 0,) provide an error term where we should expect 
(o1>>o2). 

senting surfaces at -different locations. 
A=Concrete (flat), B=Red Brick (textured), 
C=Grass (curved), D=Red Tile, E=Grass, 
F=Concrete (textured). 

The dichromatic reflection model was used on the areas 
shown in Figure 5,  to estimate the surface colors. The 
following table indicates the body color vector (cb) for 
each surface generated by our algorithm. These vectors 
are normalized in the unit RGB space. 

Surface I Cb 

4. EXPERIMENTAL RESULTS 
C I  0.6407066 I 0.692914 I 0.307031 
D I  0.6795831 1 054.5452 1 0456399 

4.1 Reflectance Model 
The data was collected (see Figure 5) by a 3CCD, 
SONY DCRlOOO digital camera equipped with a di- 
chroic prism splitting the light into three R, G, B chan- 
nels. The dichromatic reflection model (3) is used to 
estimate the color and reflectance properties of the typi- 
cal outdoor surfaces under natural illumination. We use 
an algorithm based on spatio-temporal albedo segmenta- 
tion and singular value decomposition to calculate the 
normalized colors in the dichromatic space [ 1 I]. Figure 
5 indicates several examples with areas chosen to indi- 
cate the subsurface (or body) color of the patches in the 
scene. 
In order to calculate the color vector (cb), we first select 
and arrange pixels on a surface as follows: 

where C is an mx3 real matrix. For m 2 3, matrix C can 
be factorized as in (23), where U and V are orthogonal 
square matrices, E = diag(ol,02,03) with o1 2 o2 2 o3 2 0 
and superscript represents the transpose operation. A 
standard singular value decomposition (SVD) method is 
then applied to matrix C which yields matrices, U, E, 
and V, where C represents eigenvalues in descending 
order corresponding to eigenvector columns of matrix 

I E l  0.6377073 I 0.683179 0.309178 I 
I F 1  0.6539630 I 0.608791 I 0.449115 1 
Because of the sensitivity of the color matching and 
normalization, the results are reported with 6 significant 
digits. As can be seen surfaces such as grass (surfaces C 
and E) with similar characteristics, aligned closely in the 
dichromatic plane. Subtle differences in texture and 
types of mixed materials can also influence the reflec- 
tion properties, for example, surfaces A and F both are 
concrete yet their body color differs significantly. This is 
also clear from Figure 5 where surface A is more uni- 
form whereas surface F is more textured. On the other 
hand, surfaces such as B (red-brick) and D (red-tile) 
with similar color properties in one channel (e.g., red), 
may still be distinguished from each other in the di- 
chromatic space due to their subsurface properties. 

4.2 Thermal Model 
We have utilized a FLIR SC2000 long wave infrared 
camera to measure and record surface temperatures 
based on radiation fluxes. The thermal equilibrium 
model is then utilized to estimate the surface tempera- 
tures separately. The data was collected in southern 
California at location with latitude 33'55'39" N and 
longitude 117"21'17" W, between 3:30 p.m. - 10:30 
a.m. on march 10-11, 2002. Ambient air temperature, 
and wind velocity were user specified based on reported 
weather. 
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(c) (4 
Figure 6. Graphs showing thermal measure- 
ments of two types of surfaces and the pre- 
dicted values by the physical models. Solid 
black lines indicate predicted values and col- 
ored lines show the actual measurements. (a) 
Thermal image, (b) Video image, (c) area X 
(grassldirt), (d) area Y (Cement/Concrete). 

In addition to the energy equilibrium model of section 
3.2, we utilized model 1 for Ei,, and equations (9), and 
(1 8) where fluid flow was considered laminar (1 l), and 
the R-value in (18) was user specified for the particular 
material. For the grass and concrete an average conduc- 
tivity of 1.2 and 0.8 W/mK was used respectively. Sur- 
face emissivity of concrete was fixed at 0.92 and for 
grass area at 0.97. Thermal measurements were per- 
formed at intervals of 1.5 minutes. Other parameter 
values such as ambient temperature and wind velocities 
were input to the system by the available weather data. 
As shown, the grass area was predicted much closer than 
the cement area. The fluctuations and differences are due 
to the complex surrounding structures and natural ob- 
jects. These objects also create shadows on surfaces at 
different times of the day. We were able to track the 
major changes in the temperatures, for example, the 
slope of the lines are tracked closely. In Figure 7 (d), the 
properties of the exact surface material such as its type, 
surface condition and the material below the surface was 
not available. This information, in addition to real envi- 
ronmental conditions at the location, can further help to 
predict the temperatures more accurately. 

5. CONCLUSIONS 

Physics-based sensor hsion provides a natural way of 
integrating sensors and external conditions in a unified 
manner. We have provided several physical models for 
the visible and thermal ranges of the spectrum. We have 
also shown the strength and weaknesses of each of these 
models in order of increasing sophistications and pro- 
vided guidelines for applicability of each of the models. 

In addition, we have shown examples of these models 
applied to real world surfaces. The more sophisticated 
models require a number of variables that need to be 
input to the system. This increases accuracy at the ex- 
pense of computational complexity. There is a trade-off 
of the model complexity vs. accuracy and computational 
overhead. Application specifics determine the appropri- 
ate values in practice. 
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